绝热定理及贝瑞相

绝热定理

当量子态开始绝热演化时,展开系数写为\(\psi(0)=\sum_{n}c_n\varphi_n(0)\), 则 \(t\) 时刻的量子态写为:

\[ \psi(t) = \sum_nc_n \varphi_n(t)e^{i\theta_n}e^{i\gamma_n} \]

\(\varphi_n(t)\)是哈密顿量在 \(t\) 时刻的第n个本征态,

\(\theta_n = -\frac{1}{\hbar}\int_0^{t}E_n(t)dt,~ \gamma_n = i\int_0^t\left< \varphi_n|\dot{ \varphi_n}\right> dt\)

证明:

\(\left| \psi \right>(t) = \sum_n C_n(t)e^{i\theta_{n}(t)}\left| n \right>(t)\)

\(\theta_{n}(t) = - \int \frac{E_n(t)}{\hbar}dt\)

\(\left<m\right| \left( t\right) i\hbar \dot{\left| \psi \right>}\left( t\right)\)

\(=i\hbar \left< m\right|(\sum _{n}\dot{C_n(t)}e^{i\theta _{n}\left( t\right) }\left|n \right>\left( t\right)\)

\(+C_n(t)(i\dot\theta_n(t)e^{i\theta(t)}\left| n \right>(t)+C_n(t)e^{i\theta_n(t)}\dot{\left|n\right>}(t))\)

\(\dot \theta (t) = -\frac{E_n(t)}{\hbar}\)

\(= i\hbar \dot c_m(t)e^{i\theta_m(t)}+c_m(t)E_m(t)e^{i \theta _m(t)}+\sum_n c_n(t)e^{i\theta_n(t)}\left< m\right|\dot{ \left| n\right>}(t)\)

\(\left< m\right| (t)\hat H(t) \left| \psi \right>(t)\)

\(=\left< m\right| (t)\hat H(t)\sum_i C_i(t)e^{i\theta_i(t)}\left|i\right>(t)\)

\(= E_m(t)C_m(t)e^{i\theta_m(t)}\)

$E_m(t)C_m(t)e^{i_m(t)} $

\(= i\hbar \dot c_m(t)e^{i\theta_m(t)}+c_m(t)E_m(t)e^{i \theta _m(t)}+\sum_n c_n(t)e^{i\theta_n(t)}\left< m\right|\dot{ \left| n\right>}(t)\)

\(\dot C_m(t) = \frac{i}{\hbar} \sum_n C_n(t) e^{i(\theta_n(t)-\theta_m(t))}\left< m|\dot n \right>\)

\(According \quad to \quad \hat H \left|n \right> = E_n \hat H \left|n \right>\)

$< m | | n> =( E_n -E_m ) < m|n> $

\(if \quad m \ne n \dot{C_m}(t) = \frac{i}{\hbar} C_m(t)\left<m|\dot m\right> + \frac{i}{\hbar}\sum'_n \frac{\left< m\right| \dot {\hat H}\left|m\right>}{E_n-E_m}\)

当第二项远远小于第一项时,称为绝热条件,则得到绝热定理,\(\left<m|\dot m\right>\)为实数,则证明不会对振幅产生影响。

berry 相

\(\gamma_n = i\int_0^t\left< \varphi_n|\dot{ \varphi_n}\right>dt\) 被称为几何相。假设系统 \(H\)\(R\) 的函数,\(R\)是一些线性无关的参量,于是可以把系统演化看作是R空间中以参数 \(t\) 来演化的的一条轨迹,当系统演化一个周期回到初态后,则:

\(\gamma_n = i\int_0^t\left< \varphi_n|\dot{ \varphi_n}\right>dt\)

$ = i_0^t< _n|_R |_n>(R_i/t)~dt$

\(= i\int_{R_0}^{R_T=R_0}\left< \varphi_n|\nabla_R| \varphi_n\right>\cdot d\vec{R}\)

$ =i _R< _n|_R |_n> dS$

称这个\(R_n\)空间上的积分结果为berry相

(具体计算方法的分析以及流形参数空间R的讨论见微分几何与广义相对论附录)

某点的\(B_n(R) = \nabla_R\times \left< \varphi_n|\nabla_R |\varphi_n\right>\)的计算公式:

\[ B_n(R) = i \sum^{}_{m\ne n} \frac{\left<n\right|(R)[\nabla_R H]\left|m\right>(R)\times\left<m\right|(R)[\nabla_R H]\left|n\right>(R)}{(E_n-E_m)^2} \]

自旋态二能级绝热演化推导:

假设原子在空间中受到磁场的作用 \(\hat H(t) = -\hat{\mu} \cdot B = -\frac{2\mu}{\hbar} \hat{S} \cdot B(t)\)\(B\) 在随时缓慢旋转,所以可以将B本身视作参数空间,从而推导绝热演化的情况,初态位于\(S_z = \frac{\hbar}{2}\) 态上

任意\(B\)对应的本征值:

\(\hat H = -\frac{2\mu}{\hbar} \hat{S} \cdot B(t)\)

\[ = -\mu B\left( \begin{matrix} \cos \varphi& \cos \theta \sin \varphi +\sin \theta \sin \varphi i\\\\ \cos \theta \sin \varphi -\sin \theta \sin \varphi i& -\cos \varphi\\\\ \end{matrix} \right)\\\\ \]

\[ E_{\pm}:root ~of: -\mu B\left| \begin{matrix} \cos \varphi- \mu & \cos \theta \sin \varphi +\sin \theta \sin \varphi i\\\\ \cos \theta \sin \varphi -\sin \theta \sin \varphi i& -\cos \varphi-\mu\\\\ \end{matrix} \right|=0\\\\ \]

\(E_{\pm}= \pm \mu B\)

还需求 \(\left< -\right| \nabla_B H \left| +\right>\),\(\left< +\right| \nabla_B H \left| -\right>\)来求解贝瑞相,

\(\nabla_B H = - \frac{2\mu}{\hbar}(\hat S_x \nabla_B B_x+\hat S_y \nabla_B B_y +\hat S_z \nabla_B B_z) = - \frac{2\mu}{\hbar} \hat S\)

选取 \(\left| \pm\right>\) 为基,则\(S\)表示为\(\frac{1}{2}(S_++S_-)\hat x + \frac{1}{2i}(S_+ - S_-)\hat y + S_Z \hat z\),则:\(\left< \mp\right| \nabla_B H \left| \pm \right>= \frac{\hbar}{2}(\hat x\mp i\hat y)\),此时的坐标系选择是以\(B\)方向为\(Z\)的坐标系。

带入求贝瑞项的公式得:\(D_\pm(B) = \mp \frac{1}{2\mu B^2}\vec B\)

则假设磁场由 \(B=B_0\hat z\) 绝热变化一圈,则对应的 \(\left| +\right>\) 态积累的相因子:

\(\phi_{Barry} = \oint_l D_+(\vec B) \cdot d\vec B\), \(l\)\(B\)在B空间内的演化路径


绝热定理及贝瑞相
http://dyf.zone/2022/12/03/quantum1/
作者
Duyifei
发布于
2022年12月3日
许可协议