5.推前拉回映射和李导数

拉回和推前映射

假设 \(\phi\) 是从流形\(M\)映射到流形\(N\)的映射,则拉回映射\(\phi^*:\mathscr{F}_N \rightarrow \mathscr{F}_M\) 定义为:

\(\phi^* (f)\mid _p = f(\phi(p))\)

\(p\)是流形\(M\)上的点,\(f\)是流形\(N\)上的标量场,有了拉回映射后,可以定义推前映射:

\([\phi_* (v)] f = v (\phi^* f)\)

\(v\)\(M\)上的矢量场,\(f\)\(N\)上的标量场。进一步可以推广到\((0,l),(l,0)\)型的张量:

\([\phi^* T_{ab...}]v_1^av_2^b ... = T_{ab...} (\phi_* v_1^a)(\phi_* v_2^b)..\)

importantly, \((\phi^* w_a) v^a = w_a (\phi^* v^a)\) is well defined.

so:

\([\phi_* T^{ab...}]w_a^1w_b^1 ... = T^{ab...} (\phi^* w_a^1)(\phi^* w_b^1)..\)

假如\(\phi\)是微分同胚,进一步可以推广到\((k,l)\)型张量,以\((1,1)\)型为例

\((\phi^* T_a^{\enspace b})v^aw_b =T_a^{\enspace b}(\phi_*v^a)(\phi_*w_b)\)

\((\phi_* T_a^{\enspace b})v^aw_b =T_a^{\enspace b}(\phi^* v^a)(\phi^* w_b)\)

第一个式子将 \(N\) 上的张量映射到 \(M\) 上,此处\(\phi_* w\)的和\(\phi^* v\)没有定义,则定义

\(\phi^* v = \phi^{-1}_{*}v\)

\(\phi_* w = \phi^{-1*}w\)

主被动观点和“新新老=老老新”:

由于\(M\)\(N\)微分同胚,主动观点指认为映射\(\phi\)\(M\)上的点和张量等变换了\(N\)上,而被动观点认为映射\(\phi^{-1}\)\(N\)的点和张量的基(以及张量)映射到了\(M\)上,从而导致了\(M\)引入了一个新基,所以认为映射\(\phi\)引入了一个坐标变换。

新点(\(\phi(p)\))的新张量\((\phi_* T)\)在老坐标系(\(N\)上的原有坐标系\({(\frac{\partial }{\partial x^\nu})^a}\))的展开分量等于老点(\(p\))的老张量(\(T\))在新坐标系(\(\phi^*{(\frac{\partial }{\partial x^\nu})^a}\),由\(N\)上的原有坐标系在\(M\)上诱导出来的新坐标系)的展开分量。

\(\phi_{*}T^{\nu_1\nu_2...}_{\enspace\enspace\mu_1\mu_2...}\mid _{\phi_t(p)}\) = \(T_{v_1v_2...}^{\quad \nu_1\nu_2...}|_p\)

prove: (以(1,1)型张量为例)

\((\phi_*T)_{\mu}^{\;\; \nu}|_{\phi(p)}\)=\((\phi_*T)_{a}^{\;\; b}(\frac{\partial}{\partial x^\mu})^a (dx^\nu)_b|_{\phi(p)}\)


\(=(T)_{a}^{\enspace b}(\phi^*\frac{\partial }{\partial x^\mu})^a (\phi^*dx^\nu)_b \mid _{p}\)

第一个等号来自于分量定义,第二个等号来自于推前映射的定义,

李导数

定义:

给定一个矢量场\(v\),则由该矢量场可以给出一个单参微分同胚群,记作\(\phi_t\),则李导数定义为:

\(\mathscr{L}_v T^{..}_{..}\)=\(\lim_{t\rightarrow0} \frac{\phi_{t}^{*}T^{...}_{...} -T^{...}_{...}}{t}\)

theorem1: \(\mathscr{L}_v f = v(f)\)

首先,矢量场所给出的单参微分(局域的)同胚群满足:取一点\(p\)为起点,则由矢量场给定的积分曲线有\(C(t) = \phi_t(p)\)

\(\mathscr{L}_v f\)=\(\lim_{t\rightarrow0} \frac{\phi_t^*f - f}{t}\)=\(\lim_{t\rightarrow0} \frac{f(\phi_t(p)) - f(p)}{t}\)=\(\lim_{t\rightarrow0} \frac{f(C(t))- f(C(0))}{t}\)


最后一式即为\(\frac{\partial }{\partial t}(f)\)定义

theorem2:

在适配坐标系下,\(\mathscr{L}_v T^{...}_{...}\) = \(\frac{\partial T_{...}^{...}}{\partial x_1}\)

适配坐标系即以p的坐标\((0,x_2,x_3,...)\),p的积分曲线\(C(t)\)上的点\(q\)的坐标为\((t,x_2,x_3,...)\)\(v\)\(\frac{\partial }{\partial x_1}\)的坐标系。

便于说明,采用\((1,1)\)型张量

\(\mathscr{L} T^{\enspace \mu}_{\nu}\)=\(\lim_{t\rightarrow 0} \frac{\phi_{t}^{*}T^{\enspace \mu}_{\nu} -T^{\enspace \mu}_{\nu}}{t}\) =\(lim_{t\rightarrow 0} \frac{\phi_{-t*}T^{\enspace \mu}_{\nu} -T^{\enspace \mu}_{\nu}}{t}\)


由推前映射的新点新张量在老坐标系下的展开等于“老老新”有,\(\phi_{-t*}T^{\enspace \mu}_{\nu}\mid _{p}\)=\(T'^{\enspace \mu}_{\nu}\mid _{\phi(t)(p)}\)

再由老点由\(\phi^{-1}\)诱导的新坐标等于新点在老坐标系下的坐标有(可以证明这样规定的新坐标是微分同胚映射):

\(x'^{\mu}=x'^{\mu}+t\delta_{1\mu}\)

所以

\(T'^{\enspace \mu}_{\nu}\mid _{\phi(t)(p)}\) = \((\frac{\partial x'^\mu}{\partial x^\sigma}\frac{\partial x^\eta}{\partial x'^\nu}T^{\enspace \sigma}_{\eta}\mid _{\phi(t)(p)})\) = \(T^{\enspace \mu}_{\nu}\mid _{\phi(t)(p)}\)

所以李导数写为:

\(\mathscr{L} T^{\enspace \mu}_{\nu}\) = \(\lim_{t\rightarrow 0} \frac{T^{\enspace \mu}_{\nu}\mid _{\phi_t(p)} -T^{\enspace \mu}_{\nu}\mid _{p}}{t}\)


\(= (\frac{\partial }{\partial t})T^{\enspace \mu}_{\nu}\) = $()T^{}_{} = $

theorem3:

\(\mathscr{L}_v u^a = [v,u]^a\) and \(\mathscr{L}_v w_a = v^a \nabla_b w_a+ w^a \nabla_b v_a\)

显然根据李导数的定义,与坐标系的选择无关,所以为了简化证明,可以选择适配坐标系,现证明第二条:

\(\mathscr{L}_v (w_av^a)= v(w_a v^a) = v_b \nabla^b(w_av^a) = v^b(w_a\nabla_bv^a + v^a\nabla_b w_a)\)

第一个等号来源于李导数对标量场的作用,第二个来源于导数算符对矢量作用的改写,同时:

再由theorem2和偏微分求导的莱布尼兹律说明李导数满足莱布尼兹律,则:

\(\mathscr{L}_v (w_bv^b) = w_a \mathscr{L}_v (v^b) + v^b\mathscr{L}_v (w_b)\)

$ =w_b [v,v]^b + v^b_v (w_b) = v^b_v (w_b)$


5.推前拉回映射和李导数
http://dyf.zone/2022/12/07/gr3/
作者
Duyifei
发布于
2022年12月7日
许可协议