6.killing场
killing场和超曲面
killing场定义:
假设流形\((M,g_{ab})\)上\(v\)矢量场对应的单参微分同胚映射是保度规映射,既\(\phi_t^* g_{ab} = g_{ab}\),则称\(v\)为killing场
theorem1:
\(v\)是killing场等价于\(g_{ab}\)关于\(v\)的李导数等于0等价于killing方程:
\[ \nabla_av_b +\nabla_bv_a = 0 \]
证明:
由李导数的定义
显然\(v\)是killing场可直接推出\(g_{ab}\)关于\(v\)的李导数等于0,反过来,由李导数等于0,选取适配坐标系,得到:\(\frac{\partial g_{\mu\nu}}{\partial x_1}=0\),所以\(g_{\mu\nu}\)在积分曲线上积分曲线相连的两点值相等。
设\(\phi\)从\(p\)点映射到\(q\)点
\[\begin{aligned} g_{\mu\nu}\mid_q &= g_{ab}(\frac{\partial}{\partial x^\mu})^a (\frac{\partial}{\partial x^\nu})^b\mid_q \\\\\phi_t^* g_{\mu\nu}\mid_q &= \phi_t^* (g_{ab}(\frac{\partial}{\partial x^\mu})^a (\frac{\partial}{\partial x^\nu})^b)\mid_q \end{aligned}\]由适配坐标系的定义: \(f(\phi_{-t}(q)) = F'(x'^{1}-t,x'^{2},x'^{3}...x'^{n}) = F(x^1,x^2,...x^n)\)
所以
\[\begin{aligned} &\phi_t^* (\frac{\partial}{\partial x'^\nu})^c\mid_p f(p) \\\\& = (\frac{\partial}{\partial x'^\nu})^c\mid_q f'(q) = \frac{\partial F'}{\partial x'^\nu} = \frac{\partial F}{\partial x^\nu} \\\\& = (\frac{\partial}{\partial x^\nu})^c\mid_p f(p) \end{aligned}\]得到$_t^*()^c _p =()^c _q $,所以:
最后由在积分曲线上\(g_{\mu\nu}\)为常数得到\(\phi_t^* g_{ab} = g_{ab}\),一二等价证毕
由李导数作用于二阶张量的运算法则由:
theorem 2:
如果度规张量的所有分量关于某个坐标\(x\)的导数为0,则\(x\)的坐标基矢是killing矢量场。
选取该坐标基矢场\((\frac{\partial }{\partial x})^a\)的适配坐标系,则得
theorem 3:
\(T\)是测地线的切矢,\(v\)是killing矢量场,有:\(T^a\nabla_a (T^bv_b) = 0\),也就是说killing场和切矢的内积沿测地线不变
\[\begin{aligned} &T^a\nabla_a (T^bv_b) \\\\ &= v_b T^a\nabla_a T^b +T^b T^a\nabla_a v_b \\\\ &= T^{(b} T^{a)}\nabla_a v_b \\\\ &= T^{(b} T^{a)}\nabla_{[a} v_{b]} \\\\ &= 0 \end{aligned}\]第一行是莱布尼兹律,第二行来源于测地线定义,第三行是同一个向量不同抽象记号可以加对称记号,第四行是因为killing矢量场\(\nabla_a v_b + \nabla_b v_a = 0 \Rightarrow \nabla_{[a} v_{b]} = \nabla_{a} v_{b}\)
theorem 4:
一个n维流形最多有\(\frac{n(n+1)}{2}\)个killing矢量场。(未证)
theorem 5:
证明二维闵氏空间的boost-killing矢量场与洛伦兹变换对应。
boost矢量场:\(v= t(\frac{\partial}{\partial x})^a +x(\frac{\partial}{\partial t})^a\)
首先证明它在二维闵氏空间是killing矢量场。
先给出一对新坐标,\((\phi,\eta)\),st, \(x = \eta \cosh \phi, t = \eta \sinh \phi\), 通过坐标变换轻易将\(g_{ab}\)展开为\((d\eta)_a(d\eta)_b - \eta^2 (d\phi)_a(d\phi)_b\),由theorem2,得到:\(\phi\)的坐标基矢场是killing矢量场。通过坐标变换的关系易得
\[ (\frac{\partial}{\partial \phi})^a= t(\frac{\partial}{\partial x})^a +x(\frac{\partial}{\partial t})^a \]
假设点\(q(t_0,x_0) or (phi_0,\eta_0 )\),通过boost-killing矢量场的单参微分同胚群元\(\phi_\Delta\)映射到了\(q\),则由被动观点可知,\(q\)的坐标可以视作\(p\)的新坐标,欲求解q点为起点的积分曲线,由切矢在坐标基矢的展开式表达式:
\[ (\frac{\partial}{\partial t})^a =\frac{d x^\mu}{dt} (\frac{\partial}{\partial x^\mu})^a \]
得到:
\[\begin{aligned} &\frac{d x}{d\phi} = t \enspace \frac{d t}{d\phi} = x \\\\ & x(\phi) = A \cosh \phi + B \sinh \phi \\\\ &t = A \sinh \phi + B \cosh \phi \end{aligned}\]再带入初始条件得到\(A=x_0\),\(B=t_0\)
令\(tanh=v\),则\(sinh= (v^{-2}-1)^{-\frac{1}{2}}\),\(cosh=(1-v^2)^{-\frac{1}{2}}\)
化简即为:
\[\begin{aligned} x = \frac{1}{\sqrt{1-v^2}} (x_0+vt_0) \\\\ t = \frac{1}{\sqrt{1-v^2}} (t_0 +vx_0) \end{aligned}\]