8.微分形式
定义
假设\((0,l)\)型张量满足$w_{a_1a_2...a_l} =w_{[a_1a_2...a_l]} \(,则称该张量为\)l$次形式。
由抽象指标和具体指标可相互代换容易得到在某个基底下的展开系数:
\[ w_{\mu_1\mu_2...\mu_l} =w_{[\mu_1\mu_2,...\mu_l]} \]
于是简单得到任何坐标系下,\(w_{221}\)等这种分量角标重复的都等于0,只可能存在\(w_{231}\)等这种分量。
容易验证\(l\)形式的张量满足\((0,l)\)型张量线性子空间的定义,记作\(\varLambda(l)\)。
楔形积:
\(w\)是\(l\)形式,\(w'\)是\(m\)形式,则定义他两的楔形积\(w \wedge w'\):
显然\(w \land w'\)是(l+m)型反称张量。
\(\varLambda(l)\)的维数:
假设流形的维度为\(n\),则\(dim \varLambda(l) = \frac{n!}{l!(n-l)!}\),\(l>n\)的情况无意义或者等于0。
证明:
借助基底场证明,\(\forall w_{a_1a_2...a_l} \in \varLambda(l) \subset T(0,l)\),可以写为\(w_{a_1a_2...a_l}=\sum_{i_1i_2...i_l} w_{i_1i_2...i_l} e_{i_1}e_{i_2}...e_{i_l}\),由前显然有\(w_{nn}\)等于0,再由\(w_{a_1a_2...a_l} = w_{[a_1a_2...a_l]} = \delta{(\pi)} w_{a_{\pi(0)}a_{\pi(1)}...a_{\pi(l)}}\),\(\delta{(\pi)}\)为逆序数,有\(w_{i_1i_2...i_l} = \delta{(\pi)} w_{i_{\pi(0)}i_{\pi(1)}...i_{\pi(l)}}\),为了便于说明,假定\(n =5,l=3\),将分量以展开系数的组合分类,比如分量\(w_{134} e_{1}e_{3}e_{4},w_{341} e_{3}e_{4}e_{1}\)都属于\((1,3,4)\)这个分类,由楔形积定义,
\[\begin{aligned} e_1\wedge e_3 \wedge e_4 &= 3! e_{[1}e_3e_{4]} \\\\ &= 3! \frac{1}{3!}(\sum_\pi e_{\pi(1)}e_{\pi(2)}e_{\pi(3)}) \\\\ &= \sum_\pi e_{\pi(1)}e_{\pi(2)}e_{\pi(3)} \end{aligned}\]\(\pi(i)\pi(2)\pi(3)\)是\((1,3,4)\)的任意一种排序,最终得到:\(w_{134}e_1\wedge e_3 \wedge e_4\)就是\((1,3,4)\)所有元素求和的表达式,推广得到:
\(i_1,..i_l\)是从\(1,2,..n\)中选出来的\(l\)个无顺序的数,所以\(dim\varLambda(l) = \frac{n!}{l!(n-l)!}\),并且\(e_{i_1}\wedge e_{i_2}\wedge ...\wedge e_{i_l}, j> i\)是\(\varLambda(l)的基\)
外微分算符
假设\(w_{a_1a_2...a_l}\)是\(l\)形式场,则定义\(dw_{a_1a_2...a_l}\):
\[ dw_{ba_1a_2...a_l}= (l+1) \nabla_{[b}w_{a_1a_2...a_l]} \]
其中\(\nabla\)为任意导数算符,因为克氏符下标对称可交换,所以得到该定义对于任意导数算符得到的结果相同。
theorem 1:
证明:
由定义有\(d w_{ba_1a_2...a_l} = (l+1)\partial_{[b}w_{a_1a_2...a_l]} = 1\)