Transmon与谐振子耦合的JC模型

超导量子比特Transmon与谐振腔的耦合JC模型

假如把比特截断到二能级,其与谐振腔相互耦合,则哈密顿量的写法:

\[\begin{equation} \begin{aligned} H = \hbar w_c \alpha^\dagger \alpha + \hbar w_q \frac{\sigma_z}{2} +\hbar g I_- \end{aligned} \end{equation}\]

其中 \(I_\pm = \alpha^+ \sigma^- \pm \alpha^- \sigma^+\),本note试图将这个耦合系统的哈密顿量主动变换到另一坐标系去,变换后的哈密顿量在原坐标系下对角,这个变换的表达式能够帮助我们找到系统在原坐标系的本征能级和本征态。

首先设算符 \(N_q = \left|1\right>\left<1\right|\otimes I + I \otimes \alpha^\dagger \alpha\), 第一项为比特激发态的投影算符,第二项为光腔的光子数算符,简单认为该算符是整个系统的激发光子数的计数算符。

首先证明\(N_q\)算符与\(I_-\)算符对易:

\[\begin{equation} \begin{aligned} [N_q,I_-]=&[\left|1\right>\left<1\right|+ \alpha^\dagger \alpha, \alpha^\dagger \sigma^- - \alpha^- \sigma^+] \\ =& \alpha^\dagger [\left|1\right>\left<1\right|,\sigma^-] - \alpha[\left|1\right>\left<1\right|,\sigma^+] + [\alpha^\dagger\alpha,\alpha^\dagger]\sigma^--[\alpha^\dagger\alpha,\alpha]\sigma^+ \\ =& -\alpha^+ \sigma^- - \alpha^- \sigma^+ + \alpha^+ \sigma^- + \alpha^- \sigma^+ \\ =& 0 \end{aligned} \end{equation}\]

于是\(N_q\)\(I_-\)对易,更进一步,简单扩展易知,其与哈密顿量\(H\) 对易,所以 \(N_q\) 在参与只含有 \(I_-\)\(H\) 的对易式中时,由于换序的任意性,可以不特殊考虑,将其当作常数处理。

假设变换\(U = e^{- \varLambda{(N_q)}I_{-}}= e^{- D}\),其中\(\varLambda\) 是算符\(N_q\)的函数,简单容易证明\(U^{\dagger} =e^D\) , 故该变换为幺正变换。

根据Hadamard引理:

\[\begin{equation} \begin{aligned} &e^{\hat{A}}\hat{B}e^{-\hat{A}} \\=&\sum_{n=0}^{\infty}\frac{1}{n!}\left[ ....\left( n \right) ....\left. \left[ \hat{A} \right. ,\left[ \hat{A},\hat{B} \right] \right] \right] \\=&\sum_{n=0}^{\infty} \frac{1}{n!}C_A^n B \end{aligned} \end{equation}\]

这里第三行是对第二行对易式的简写,对哈密顿量\(H\)\(U\)进行变换:

\[\begin{equation} \begin{aligned} &U^\dagger H U \\=& e^D H e^{-D} \\= & \sum_{n=0}^{\infty} \frac{1}{n!} C^n_{D} H_0 + C^n_{D} \hbar g I_+ \end{aligned} \end{equation}\]

\([I_-,H_0] = \hbar (w_r-w_q) I_+= \hbar \Delta I_+\)可将第一项写为\(H_0+\Delta \hbar \sum_{n=0}^{\infty}\frac{1}{(n+1)!}C^n_{\varLambda I_-}I^+\),于是原式写为:

\[\begin{equation} \begin{aligned} U^\dagger H U =H_0+\Delta \hbar \sum_{n=0}^{\infty}\frac{(n+1)\hbar g +\hbar \Delta \varLambda}{(n+1)!}C^n_{\varLambda I_-}I^+ \end{aligned} \end{equation}\]

此时需要计算\([I_-,I_+]\)进一步化简:

\[\begin{equation} \begin{aligned} &C^0_{\varLambda I_-}I^+ = I_+ \end{aligned} \end{equation}\]

\[\begin{equation} \begin{aligned} C^1_{\varLambda I_-}I^+ &= \varLambda [I_-,I_+] \\&= \varLambda( 2[\alpha^+\sigma_{-},\alpha\sigma_{+}]) \\&= \varLambda( -2 \alpha^+\alpha \sigma_z - \sigma_{z} -1) \\&= \varLambda( -2 \alpha^+\alpha \sigma_z - \sigma_{z} -\sigma_{z}^2) \\&= \varLambda( -(2 \alpha^+\alpha +\sigma_z +1) \sigma_z) \\&= \varLambda( -(2 \alpha^+\alpha +2 \left|1\right>\left<1\right|) \sigma_z) \\& = -2 \varLambda N_q \sigma_z \end{aligned} \end{equation}\]

进一步的,由 \([\sigma_z,I_-] =-2 I_+\),最终得到表达式:

\[\begin{equation} \begin{aligned} &C^{2n}_{\varLambda I_-}I^+ = \left(-4\right)^{n}\Lambda^{2n}N_{q}^{n}I_{+} \\& C^{2n+1}_{\varLambda I_-}I^+ = -2 \left(-4\right)^{n}\Lambda^{2n+1}N_{q}^{n+1}\sigma_z \end{aligned} \end{equation}\]

最终得到变换后的哈密顿量:

\[\begin{equation} \begin{aligned} H_D = H_0+ \hbar(\frac{\Delta\sin(2\Lambda\sqrt{N_{q}})}{2\sqrt{N_{q}}}+g\cos (2\Lambda\sqrt{N_{q}}))I_+ \\+2\hbar N_q\sigma_z(\frac{g\sin(2\Lambda\sqrt{N_{q}})}{2\sqrt{N_{q}}}+\frac{\Delta(1-\cos (2\Lambda\sqrt{N_{q}}))}{4N_q}) \end{aligned} \end{equation}\]

为了使得变换后的哈密顿量在原坐标系下对角,\(I_+\)项应当为0,故得到\(\varLambda(N_q)\)的表达式:

\[\begin{equation} \begin{aligned} \Lambda(N_{q})=\frac{-\arctan(2\lambda\sqrt{N_{q}})}{2\sqrt{N_{q}}} \end{aligned} \end{equation}\]

其中 \(\lambda = \frac{g}{\Delta}\),其下将使用该变换得到本征能级和本征态:

\[\begin{equation} \begin{aligned} U^\dagger H U \left|n,g\right> &= E_{n,g}\left|g,n\right> \Rightarrow \\H(U\left|g,n\right>) &= E_n (U\left|g,n\right>) \end{aligned} \end{equation}\]

\(H\) 的本征值(借助\(H_D\)原坐标系求解得):

\[\begin{equation} \begin{aligned} H^{D}&=H_{0}-\frac{\hbar\Delta}2\left(1-\sqrt{1+4\lambda^{2}N_{q}}\right)\sigma_{z} \\E_{g,n}&=\hbar n\omega_{r}-\frac{\hbar}{2}\sqrt{\Delta^{2}+4g^{2}n} \\E_{e,n-1}&=\hbar n\omega_{r}+\frac{\hbar}{2}\sqrt{\Delta^{2}+4g^{2}n} \end{aligned} \end{equation}\]

\(H\)的本征态求解,以\(\widetilde{\left|n,g\right>} = U\left|n,g\right>\)为例:

\[\begin{equation} \begin{aligned} D\left|n,g\right> &= \frac{\arctan(2\lambda \sqrt N_q)}{2\sqrt N_q} I_- \left|n-1,e\right> \\&= \frac{\arctan(2\lambda \sqrt n)}{2\sqrt n} \sqrt{n} \left|n-1,e\right> \\& = \frac{\arctan(2\lambda \sqrt n)}{2} \left|n-1,e\right> \\D\left|n,e\right> & = -\frac{\arctan(2\lambda \sqrt{n+1})}{2} \left|n+1,g\right> \end{aligned} \end{equation}\]

于是:

\[\begin{equation} \begin{aligned} \widetilde{\left|n,g\right>} =& U \left|n,g\right> = e^{-D}\left|n,g\right> \\ =& \sum_{m=0}^{infty} \frac{1}{(2m)!}(-1)^{2M}D^{2m}\left|n,g\right> \\ +&\sum_{m=0}^{infty} \frac{1}{(2m+1)!}(-1)D^{2m+1}\left|n,g\right> \\ = & \sum_{m=0}^{infty} \frac{1}{(2m)!}(-1)^{2M}(\frac{-\arctan (2\lambda \sqrt n)}{2})^2m \left|n,g\right> \\ +& \sum_{m=0}^{infty} \frac{1}{(2m+1)!}(-1)^{m+1}(\frac{-\arctan (2\lambda \sqrt n)}{2})^2m\left|n,g\right> \\ =& \cos (\Theta_n) \left|n,g\right> - \sin (\Theta_n)\left|n-1,e\right> \end{aligned} \end{equation}\]

\(\Theta_n = \arctan{(2\lambda \sqrt{n})}/2\),同理:

\[\begin{equation} \begin{aligned} \widetilde{\left|n-1,e\right>} = \sin (\Theta_n) \left|n,g\right> + \cos (\Theta_n)\left|n-1,e\right> \end{aligned} \end{equation}\]

推导来源与参考文献


Transmon与谐振子耦合的JC模型
http://dyf.zone/2023/08/03/superconducting-qubits1/
作者
Duyifei
发布于
2023年8月3日
许可协议