比特与腔耦合的系统近似解耦方法
根据之前的推导,得到了二能级比特与单模腔的耦合JC模型得到其对角化的哈密顿量,链接1,链接2,实际使用的超导量子比特往往不是一个完美的二能级系统,而是多能级的原子体系,此处提供多能级超导量子比特与谐振腔(只考虑与比特最近的单模)在色散极限下的相互作用体系下,近似对角化系统哈密顿量的方法。
Schrieffer–Wolff transformation
假设哈密顿量写为 \(\hat{H} = \hat{H_0}+\lambda \hat V\) , 其中 \(\hat H_0\)是块对角矩阵,哈密顿量减去 \(\hat H_0\) 后得到\(\lambda \hat V\),其代表不同分块子空间之间的相互作用,要求是一个小量,\(\lambda\) 用于记录其小量阶数,且由定义易知\(\lambda \hat V\) 块对角元为0,换句话说,把子空间投影算符写为\(\hat{P}_\mu=\sum_n|\mu, n\rangle\langle\mu, n|\),\(\mu\)为子空间的序号,\(n\)是该空间上基的序号:
\[\begin{equation} \begin{aligned} &\sum_{\mu}\sum_{\nu} \hat{P}_\mu H_0\hat{P}_\nu = H_0, \\&\hat{P}_\mu W\hat{P}_\mu= 0 \end{aligned} \end{equation}\]
令\(U=e^{i \hat S}\)为想做的变换幺正矩阵,\(S\) 自身满足 \(P_\alpha S P_\alpha=0\),想要变换后的哈密顿量\(H^{\prime} = U HU^\dagger\)满足
\[\begin{equation} \begin{aligned} P_\alpha H^{\prime} P_\beta=P_\alpha e^{i S} H e^{-i S} P_\beta=0 \quad(\alpha \neq \beta) \end{aligned} \end{equation}\]
将变换 \(S\) 也以\(\lambda\)为系数展开:
\[\begin{equation} \begin{aligned} S=\sum_{n=1}^{\infty} \lambda^n S_n, \end{aligned} \end{equation}\]
其中,\(S_n\) 也必须满足 \(P_\alpha S_n P_\alpha=0\),根据Hadamard's lemma:
\[\begin{equation} \begin{aligned} H^{\prime}&=H+[i S, H]+\frac{1}{2 !}[i S,[i S, H]]+\cdots \\ &=\sum_{n=0}^{\infty} \frac{1}{n !}[i S, H]_n \\&= H_0+\left\{\lambda V+\left[i \lambda S_1, H_0\right]\right\}+\left\{\left[i \lambda^2 S_2, H_0\right]+\left[i \lambda S_1, \lambda V\right]\right. \\ & \left.\quad+\frac{1}{2}\left[i \lambda S_1,\left[i \lambda S_1, H_0\right]\right]\right\}+\mathcal{O}\left(\lambda^3\right) . \\ \end{aligned} \end{equation}\]
由 \(H^{\prime}\) 是块对角算符,有\(\sum_{\alpha} P_{\alpha} H^{\prime} P_\alpha= H^{\prime}\),于是对上市左右同乘\(P_\alpha\)后求和,并将表达式改写,最后得到:
\[\begin{equation} \begin{aligned} H^{\prime}&\approx \sum_{\alpha} P_{\alpha}(\ H_0+\left\{\lambda V+\left[i \lambda S_1, H_0\right]\right\}+\left\{\left[i \lambda^2 S_2, H_0\right]+\left[i \lambda S_1, \lambda V\right]\right. \\& \left.\quad+\frac{1}{2}\left[i \lambda S_1,\left[i \lambda S_1, H_0\right]\right]\right\} )P_\alpha \\& = \sum_{\alpha} P_{\alpha}H_0P_{\alpha} + \sum_{\alpha} P_{\alpha}\lambda V P_{\alpha} + \sum_{\alpha} P_{\alpha}(i \lambda S_1 H_0 -i \lambda H_0S_1) P_{\alpha}) ... \\&= H_0 + 0+i \lambda \sum_{\alpha} \sum_{\beta} (P_{\alpha} S_1 P_{\beta}P_{\beta}H_0 P_{\alpha} - P_{\alpha}H_0 P_{\beta}P_{\beta} S_1 P_{\alpha} ) ... \\&=H_0+\frac{1}{2} \sum_\alpha P_\alpha\left[i\lambda S_1, \lambda V\right] P_\alpha + \mathcal{O}\left(\lambda^3\right) . \end{aligned} \end{equation}\]
为了求得\(S_1\)的表达式,求\(P_{\alpha} H' P_{\beta}, \alpha \ne \beta\):
\[\begin{equation} \begin{aligned} P_{\alpha} H' P_{\beta} &= P_{\alpha}(\ H_0+\left\{\lambda V+\left[i \lambda S_1, H_0\right]\right\}+\left\{\left[i \lambda^2 S_2, H_0\right]+\left[i \lambda S_1, \lambda V\right]\right. \\& \left.\quad+\frac{1}{2}\left[i \lambda S_1,\left[i \lambda S_1, H_0\right]\right]\right\} )P_{\beta} \\ 0 & = P_{\alpha}\lambda V P_{\beta} + P_{\alpha} \left[i \lambda S_1, H_0\right] P_{\beta} +\mathcal{O}\left(\lambda^2\right). \end{aligned} \end{equation}\]
由\(\lambda\) 一阶项等于0,得到方程 \(P_{\alpha}\lambda V P_{\beta} = - P_{\alpha} \left[i \lambda S_1, H_0\right] P_{\beta}\),通过方程可求解\(\lambda S_1\)的表达式,当 \(H_0\) 为对角矩阵时,可简单写出该方程的解:
\[\begin{equation} \begin{aligned} P_\alpha i S_1 P_\beta=\frac{P_\alpha V P_\beta}{E_\alpha-E_\beta} \end{aligned} \end{equation}\]
多能级比特与腔耦合
将旋波近似后的比特哈密顿量写出:
\[\begin{equation} \hat{H} \approx \hbar \omega_r \hat{a}^{\dagger} \hat{a}+\hbar \omega_q \hat{b}^{\dagger} \hat{b}-\frac{E_C}{2} \hat{b}^{\dagger} \hat{b}^{\dagger} \hat{b} \hat{b} +\hbar g\left(\hat{b}^{\dagger} \hat{a}+\hat{b} \hat{a}^{\dagger}\right) \end{equation}\]
与前文对应,令
\[\begin{equation} \begin{aligned} H_0 &= \hbar \omega_r \hat{a}^{\dagger} \hat{a}+\hbar \omega_q \hat{b}^{\dagger} \hat{b}-\frac{E_C}{2} \hat{b}^{\dagger} \hat{b}^{\dagger} \hat{b} \hat{b} \\& g V= \hbar g\left(\hat{b}^{\dagger} \hat{a}+\hat{b} \hat{a}^{\dagger}\right) \end{aligned} \end{equation}\]
将 \(g\) 作为小量的记号,设态记号 \(\left|n,l\right>\),\(n\) 为腔的光子数,\(l\) 为比特的能级记号,则 \(S_1\) 等于:
\[\begin{equation} \begin{aligned} \end{aligned} \end{equation}\]